Menoufiya University Faculty of Engineering Shebin El-Kom Department: Mech. Power Eng. Second Semester Examination Academic Year: 2014-2015

Subject: Automatic Control Code: MPE 422 Year: 4th Year Time Allowed: 3 hours, **90 Marks** Date: حديث 23 May 2015

(4 Marks)

Allowed Tables and Charts: None

Please, Answer all the following Questions

Question (1) (28 Marks)

(a) What is a Servomechanism as a control term (one illustrated example)? (4 Marks)
(b) When a control system is described as a linier system?. (4 Marks)
(c) The closed-loop transfer function of a control system is given by:

 $\frac{C(s)}{R(s)} = \frac{1}{(s^3+b_1s^2+b_2s+b_3)}, \text{ the Hurwitz determinants are computed as } D1 = 6, D2 = 60, \text{ and}$

D3= 360.

(i) Evaluate the coefficients b1, b2, and b3.

(ii) Find the unit step response of the system; i.e. final value of c if R (s) = $\frac{1}{s}$. (3 Marks)

(iii) Knowing that one of the closed-loop poles=-1, find the other two poles. (3Marks) (iv) Find c(t), if the system is subjected to an impulse input; i.e. R(s) = 1. (4 Marks) <u>Hint</u>: if $F(s) = \frac{1}{s+a}$, then $f(t) = e^{-at}$

(d)A feedback control system has a characteristic equation: $s^3+(4+K)s^2+6s+16+8K=0$ The parameter, K, must be positive. Using Routh's stability table, evaluate the maximum value of K that can be tuned before the system becomes unstable. When K is equal to the maximum value, the system oscillates. Determine the frequency of oscillation. (6 Marks)

Question (2) (20 Marks)

(a) Which properties that we may get when both polar and Bode plots are drawn for any control system? (4 Marks)

(b) Draw Polar Plot for a plant transfer function $G(s) = \frac{30}{s(1+3s)(1+5s)}$ after computing

intersection of the curve and the vertical asymptote with real axis. (8 Marks) (c) Draw Bode Plots for G(s), then detect both gain- and phase margins graphically.

<u>Hint</u>: for $F(j\omega) = \frac{1}{1+j\tau\omega}$, you may obtain $\phi = -\tan^{-1}(\tau\omega)$. (8 Marks)

Question (3) (22 Marks)

(a) Discuss briefly the benefits of introducing a feedback (four only) to a control system? (4 Marks)

(b) It is required to place the poles of a system using a series compensator (controller), Gc(s), and the Diophantine equation for the plant

 $G_p(s) = \frac{s+3}{s^3+s^2+10}$. The desired closed-loop poles are -3, -6, and as many factors

of (s+10) as you need to the desired pole polynomial to find a proper controller.

(18 Marks)

P. T.O. -----

Menoufiya University Faculty of Engineering Shebin El-Kom Department: Mech. Power Eng. Second Semester Examination Academic Year: 2014-2015

Subject: Automatic Control Code: MPE 422 Year: 4th Year Time Allowed: 3 hours, **90 Marks** Date: حديث 23 May 2015

Allowed Tables and Charts: None

<u>Question (4)</u> (20 Marks)

(a) Define the controllability of a control system; explain how it can be used in transforming state-variable representation of a control system from one form to another. *(5 Marks)*

(b) The input-output transfer function of a plant $G_p(s) = \frac{Y(s)}{U(s)} = \frac{4}{s^3 + 5s^2 + 4}$ may be

represented into physical state-variable form as:

$$x' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -4 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u, and y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

(i) Deduce the phase-variable representation of the given system. (6 Marks)
 (ii) compute the controllability matrices for both representations; hence, compute the transformation matrix, P_p, between both forms based on these controllability matrices.

(iii) Design the state-variable feedback controller gain, k^{T} , with forward gain, K=1, that can be used to place the poles of the closed-loop system at s=-2, -3, and -10 (3 Marks) <u>NOTE</u>: For plant description in phase-variable form, the appropriate values of k_{p} is easily found from the relation $k_{p}=(d-a)/K$. Where d is the column vector of coefficients of the desired n<u>th</u>-order polynomial that the closed-loop poles to be located. While (a) is the vector of coefficients of characteristic equation of the plant, $k^{T} = k_{p}^{T} * P_{p}$

GOOD LUCK